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Numerical observation of nonaxisymmetric vesicles in fluid membranes
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By means of Surface Evolver, a software package of brute-force energy minimization over a triangulated
surface developed by the geometry center of the University of Minnesota@Exp. Math1, 141~1992!#, we have
numerically searched the nonaxisymmetric shapes under the Helfrich spontaneous curvature~SC! energy
model. We show that there are abundant mechanically stable nonaxisymmetric vesicles in the SC model,
including both regular shapes with intrinsic geometric symmetry and complex irregular ones. We report in this
paper a catalog of interesting shapes including acorniculateshape with six corns, a quadriconcave shape, a
shape resemblingsickle cells, a shape resemblingacanthocytes, and twotubelikeshapes. Most of these shapes
can be related to experimental observations in red blood cells and other experiments in fluid membrane.
@S1063-651X~98!06510-6#

PACS number~s!: 82.70.2y, 68.15.1e, 02.40.2k
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I. INTRODUCTION

Vesicles are bags of lipid bilayer membranes which fo
spontaneously in an aqueous environment under approp
conditions. In order to study theoretically the morphology
vesicles, a lipid bilayer with liquid crystalline structures a
characteristics has long been considered as a model. A
scription of a fluid membrane by a curvature energy mo
was given by Canham@1#, in which the local energy densit
of the form (2H)2 was introduced, whereH is the mean
curvature of the surface. According to the current viewpo
this energy model is a faithful description of a vesicle whi
consists of a symmetric bilayer. However, real lipid bilaye
are not symmetric and hence there is no genuine phys
realization of this model. Helfrich@2# proposed from curva-
ture elastic theory in liquid crystal the well-known spontan
ous curvature~SC! energy model, in which the energy func
tional is

F5
1

2
kcE ~C11C22C0!2dA1DPE dV1lE dA,

~1!

wheredA and dV are the surface area and the volume e
ments for the vesicle, respectively,kc is an elastic modulus
C1 and C2 are the two principal curvatures of the surfac
andC0 is the spontaneous curvature to describe the poss
asymmetry of the bilayer membrane. Nonzero values ofC0
result from the fact that a lipid bilayer may have a tenden
to curve one way or the other, due, for example, either
intrinsic chemical asymmetry between the two leaves an
to a chemical asymmetry between the interior and exte
aqueous environments. The Lagrange multipliersDP andl
take account of the constraints of constant volume and a
which can be physically understood as the osmotic pres
between the ambient and the internal environments, and
surface tensile coefficient, respectively. Based on the mo
many works on the morphology of vesicles have been d
in the axisymmetric case. In their pioneering work on t
model, Deuling and Helfrich@3,4# numerically found a cata
PRE 581063-651X/98/58~4!/4730~7!/$15.00
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log of possible axisymmetric vesicle shapes. In their pap
they used the nomenclature developed in the red blood c
~RBCs! literature to describe the shapes they found: The p
late and oblate ellipsoid, stomatocytes, and discocytes, s
of which strikingly resemble the shapes of human RBCs

Further, by performing the variation of the energy fun
tional the general equilibrium shape equation was deri
@5#,

DP12lH22kc@2H~H22K !1C0K1~C0
2/2!H1¹2H#50,

~2!

where¹25@(1/Ag) ] i(g
i jAg] j )# is the Laplace-Beltrami op-

erator, g is the determinant of the metricgi j , and gi j

5(gi j )
21, K5C1C2 is the Gaussian curvature, andH

5(1/2)(C11C2) is the mean curvature~here we use a dif-
ferent sign convention forH from the original derivation of
the general shape equation in@5#!.

By using the scale invariance of the curvature ene
functional~1!, the number of parameters can be reduced. T
areaA is often used to define a length scaleR05AA/4p, and
R0 is used to define two independent dimensionless v
ables, the reduced volumev5V/(4/3)pR0

3, and the reduced
spontaneous curvaturec05C0R0 . Any solution of Eq.~2!
depends only on these two dimensionless quantities. The
ues of (v,c0) in general correspond to a set of shapes,
noted byS(v,c0) . For a given value ofc0 , it can be qualita-

tively understood that the number of shapes inS(v,c0) should

increase asv decreases. At the right end,v51, there is only
one shape inS(1,c0) , namely, the sphere.

Locating different branches of shapes of minimal ene
in the parameter space spanned by (v,c0), the division of the
parameter space represents the so-called phase diagra
the vesicle shapes. In the SC model, Seifertet al. @6# calcu-
lated the two-dimensional phase diagram for axisymme
shapes within a limited parameter space.

Solving the shape equation under the axisymmetric c
in which the corresponding shape equation can be tra
formed from Eq.~2! into an ordinary differential equation
4730 © 1998 The American Physical Society
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@7#, several analytical solutions have been found. Amo
these solutions are the solution of biconcave shape, the t
solution, and the beyond-Delaunay surfaces@8#, in which the
first two solutions have been supported experimentally@9#.
All these studies concentrate on axisymmetric ves
shapes. No nonaxisymmetric vesicle shape of spherica
pology has been reported in the SC model.

On the other hand, in other curvature energy mod
some progress has been achieved in finding nonaxisymm
vesicle shapes of spherical topology by means of brute-fo
energy minimization over a triangulated surface. In the a
difference elastic~ADE! model, nonaxisymmetric ellipsoid
shapes have been reported@10#, and very recently, Wintz
et al. @11# reported a catalog of starfish shapes based o
modified ADE model including the contribution of the com
pressibility of the total area and volume. Characteristic of
starfish shapes is their flatness and their multifold symme
As far as we know, no other nonaxisymmetric vesicle sh
has been reported in the literature by any of the known m
els.

However, on the experimental side, various nonaxisy
metric RBC shapes of spherical topology have long b
observed. They may take very complex configurations,
many of them even have no intrinsic geometric symme
There are a lot of clear figures obtained by scanning elec
microscope of RBCs in the bookLiving Blood Cells and
Their Ultra-structure @12# including very complex vesicle
shapes such as theechinocyte typecells ~Fig. 98 in @12#!
which have a characteristic shape with crenations or spic
~almost! evenly distributed on the surface, theacanthocyte
typecells~Figs. 157 and 159 in@12#! which bear a superficia
resemblance toechinocytesbut with many fewer spicules
irregularly arranged and bent back at their tips, theknizocytes
~Figs. 106 and 107 in@12#! which are triconcave and quad
riconcave shapes, thesickle typecells ~Fig. 198 in @12#!
which show a sicklelike shape, and so on. In addition, ma
other complex shapes were found in the experimental st
of transformation pathways of liposomes@13#, in which the
shape transformation is induced by the osmotic pressur
circular biconcave form was used as the initial shape in
study. Many thin stable flexible tube forms were also fou
Before the full development of these tubes certain trans
forms appear which can be described as filaments with s
heads. These tubes are curved, so they are also nonax
metric.

These complex shapes have not yet been understood
retically in the context of bending energy models. Some
searchers@14# believe that such exotic shapes may invol
other energy contributions such as higher-order-curva
terms and van der Waals attraction of the membrane. H
ever, the conjecture is not so obvious as it seems. We w
like to explore if it is possible to describe these comp
shapes by a simple curvature model, such as the SC m
The purpose of this paper is to search numerically for n
axisymmetric shapes of spherical topology within the fram
work of the SC model.

Inspired by its success in finding the nonaxisymme
ellipsoidal and starfish shaped vesicles@10,11#, we have em-
ployed the algorithm of brute-force energy minimizatio
over a triangulated surface in the present study. The me
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directly minimizes the total energy. The resulting shape ha
local energy minimum which depends in principle on t
initial shape chosen.

We will also locate each shape found by us in the ph
diagram in order to know to which region of the parame
space these shapes belong. Further, in order to describ
vesicle shapes, we will use the same nomenclature as in@12#
for the shapes that resemble the figures in@12#.

The plan of the paper follows: Section II describes t
algorithm and the procedure; Sec. III gives the main resu
and Sec. IV has the discussion and conclusion.

II. MODEL, SOFTWARE, AND THE PROCEDURE

In order to find the locally stable nonaxisymmetric co
figurations of vesicles, we evaluate the bending energy
merically with the constraint of the constant volume and
constant area within the SC model. Under the constrain
constant volumeV, the parameterl is understood as the
tensile coefficient while under the constraint of constant a
A, the parameterDP is understood as the osmotic pressu

The software we used to search for the surfaces is
‘‘Surface Evolver’’ package of computer programs@15#
which is based on the discretization of the curvature ene
the area, and the volume on a triangulated surface. The
ergy in the Evolver can be a combination of surface tensi
gravitational energy, squared mean curvature, etc. The c
straints can be on vertex positions, or on integrated quant
such as body volume, surface area, etc. The constraints
incorporated in the bending energy. The resulting total
ergy is minimized by a gradient descent procedure, and
resulting shape is a local energy minimum. These charac
istics of the Evolver make it a useful tool for studying no
axisymmetric shapes in the SC model. In the Evolver
osmotic pressure is denoted by an internal pressureP and it
can deal with the following energy functional convenientl

F5m1E ~H2H0!2dA1lE dA2PE dV, ~3!

where m1 is called the ‘‘weight’’ of the bending energy
Under the definition ofH5(1/2)(C11C2), the model is
identical to the SC model under the transformationsm1
52kc , P52DP, and H05C0/2. No particular units of
measurement are used in the Evolver. However, in orde
relate the program values to a real situation, all the val
ought to be within one consistent unit system.

The software has been employed to deal with many g
metric problems such as constant mean curvature surfa
equilibrium foam structures, etc. for several years@16–18#. It
has also been utilized to deal with a wide range of phys
problems involving surfaces as shaped by surface ten
and bending and other energies for a long time. To stu
Kelvin’s conjecture on minimal surfaces the authors of@19#
used the Surface Evolver to produce the minimal structure
flat-sided polyhedral cells. The Surface Evolver was a
used to study elasticity of dry foams@20,21# and compressed
emulsions@22,23#. Just as an exercise, we tested it for t
equilibrium condition of a perfect sphere with a given targ
volume evolved from a cube in the SC model. The equil
rium condition for the energy functional~3! is
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2Pr312lr 212m1H0r ~211H0r !50, ~4!

wherer is the radius of the sphere. This is identical to t
results in@5#. With the parametersm151, H051, l52, and
the target volumeV54.189, we obtained a stable unit sphe
from the Surface Evolver with the areaA512.5774, and the
Lagrange multiplierP54.0023, which do satisfy the equ
librium condition.

Though the surfaces found by such an algorithm co
spond to the energy minima, the Surface Evolver has a
vision to test the stability by subjecting the resulting sha
to a perturbation of finite amplitude. Each vertex of the t
angulated surface is moved byA sin(n•v1c), whereA is
the amplitude vector,n is the position vector of the vertexe
v is the wave vector, andc is the phase. The parametersA,
v, andc can be set by hand or generated randomly. In
random cases, a random amplitudeA and a random wave
lengthL are chosen from a sphere whose radius is the siz
the object. We used this feature of the Surface Evolver to
all the shapes reported in the paper.

One should keep in mind two important points of th
algorithm.~1! A data file describing the initial shape must b
provided in order to initiate the Surface Evolver. It is qu
difficult to write the data file for a complex shape. Polyhed
are often used as initial shapes from which a target sh
satisfying the constraints, such as target volume, target a
etc., can be obtained by refining and evolving command
the software.~2! The final shape satisfying the constrain
strongly depends on the choice of the initial shape. One m
expect that all the possible shapes in a parameter rangv1
<v<v2 and c01

<c0<c02
can be found by scanning th

region step by step from an initial shape. However, this d
not happen because~a! for any pair of values of (v,c0), there
is in general a set of coexisting stable shapes~the coexisting
shapes means the shapes with the same parameter va!
and ~b! the shape found by the algorithm depends stron
on the initial shape. Thus the shapes generated by the s
ning method form just a subset of all the possible shap
Since normally one can write only a simple data file for t
starting shape, it is difficult to obtain complex shapes by
scanning procedure. Consider the following example: from
starting shape~which can be stable or unstable!, with C0 and
A constant, by gradually changing the value of the tar
volumeV, one can get a sequence of stable shapes~the se-
quence does not include the initial shape!. However, since
the (i 11)th shape is determined by thei th shape, the whole
sequence of generated shapes is determined by the sta
shape. A very important point is that the sequence of
generated shapes is insensitive to the initial shape, in tha
same sequence is obtained even if the initial shape is slig
distorted. The above scanning process of the exampl
equivalent to scanning step by step along the reduced vol
while the reduced spontaneous curvature is kept cons
However, since for any given pair of values of (v,c0), there
exists a set of coexisting shapesS(v,c0) , it is obvious that the
shapes included in the sequence form just a subset of al
shapes existing in the scanning region. Many~complex!
shapes will not show up since in general one can only p
vide a simple datafile for the initial shape. To get comp
shapes from the simple initial shapes, the sequence’s in
sitiveness to the initial shape must be broken.
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We suggest the following alternative procedure: if som
geometric quantities, such as the volume, the area, the
duced volume, etc., of the target shape are chosen to b
from the initial shape, one can imagine that the initial sha
will evolve continuously through a long and complex pat
way before it finally reaches a stable configuration satisfy
all the geometric constraints. Any configuration in the pa
way is unstable. One should expect the final shape~as well as
the pathway! to be sensitive to the initial shape due to
long and complex pathway. Two shapes only slightly diffe
ent from each other may lead to two very different fin
shapes with the same target constraints since the small
ference will be enlarged in the course of evolution.

Hence, from an initial shape with parameters (v i ,c0),
there exist different ways to obtain a final shape with tar
parameters (v f ,c0). ~a! The shape transition procedur
scanning fromv i to v f gradually. The shape at each scanni
step is stable and the final shape is insensitive to the in
shape.~b! The ‘‘jump’’ procedure: an initial shape evolve
directly into a final shape with the target parameters, wh
is sensitive to the initial shape. The two procedures m
produce different final shapes coexisting at the same par
eters from the same initial shape. Obviously, the jump p
cedure provides us with the ability to obtain complex sha
from simple initial shapes. Using shapes found by the ju
procedure as the initial shapes, more interesting shapes
be generated using the shape transition procedure.

However, there is a technical difficulty with the jump pro
cedure described above: changing the reduced volu
abruptly imposes constraints on both the areaA as well as
the volumeV, which often lead to a singular behavior of th
software. The Surface Evolver may not converge within
finite number of iterations and singularities might occur.
avoid this problem, we free the constraints on area a
abruptly change the volumeV to a value far from the initial
one. The Surface Evolver thus gains much more freedom
deform the shape in the process of evolving and works w
many fewer singularities.

We calculated the reduced spontaneous curvature and
reduced volume for the shapes and located them in the
rameter space spanned by (v,c0) in order to know in which
region of the parameter space these shapes exist. Follo
is an outline of the procedure~supposing we start from a
sphere of volume 1!.

~i! Given certain values ofC0 and l, let the Surface
Evolver evolve the sphere to a target shape with volumeV,
whereV is far from 1. Herel is the tensile coefficient, and
C0 is the spontaneous curvature. It is hoped that such a
den and big change in the volume will trigger a ‘‘rando
walk’’ in the configuration space of the surface shapes bef
it finally settles in a nontrivial locally stable configuratio
with volumeV. This procedure can be applied to any sha
to generate more stable shapes.

~ii ! We choose the complex shapes obtained in the ab
process and study their shape transition sequences, w
can generate more stable and interesting shapes.

III. MAIN RESULTS

By the procedure described in the preceding secti
many striking vesicle shapes were found. Some of the sha
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resemble the RBC shapes observed experimentally w
some resemble the experimental results of liposomes. To
scribe these exotic shapes, we adopt the nomenclature
in the red blood cells literature for those resembling the
servations in RBCs. We report six types of shapes in
paper, the corniculate shape, the knizocyte type shape
sickle type shape, the acanthocyte type shape, and two t
like shapes shown in Fig. 1~a!, Fig. 2, Fig. 3, Fig. 4, and Fig
5~a!, Fig. 5~b!, respectively. Two thousand to 3000 gr
points were used with an accuracy of at least 1% in the t
energy.

Though the shapes searched by the algorithm are loc
stable, the stability was further tested by subjecting them
perturbations of finite amplitude. All the six shapes are sta
under the perturbations. Each of the shapes is mapped
the two-dimensional phase diagram following Seifertet al.
@6# in reduced volume and the scaled spontaneous curva

Corniculate shape

Figure 1~a! shows a corniculate surface with six corn
whose location in the phase diagram is (v50.95, c051.35!.
This shape apparently has rotational symmetry which
identical to the octahedron and thus isomorphic toS4 , where
SX denotes the group of permutations of the setX @24#.
Though we did not find a similar shape in@12#, this shape
may indicate the way of formation of echinocyte III vesic
shapes~Fig. 98– Fig. 100 in@12#! which have 10–50 corns
evenly distributed on a nearly spherical surface. To show
fact that there are coexisting shapes in the parameter s
spanned by (v,c0), keeping (v,c0) constant, we subjecte
the shape shown by Fig. 1~a! to long wavelength perturba
tion with large amplitude. It is heavily deformed into a di
torted one, shown by Fig. 1~b!. Running the Surface Evolve
on the deformed shape, we finally got a new stable sh
shown by Fig. 1~c!, an axisymmetric ellipsoidlike shap
which has the same parameters as those of Fig. 1~a!. Since
Fig. 1~a! and Fig. 1~c! are at the same location in the param
eter space, we use the mark ‘‘* 1’’ in Fig. 6 to denote both
the shapes. It is obvious that the two coexisting stable sha
will lead to two different shape transition sequences un
the same transition procedure.

Knizocyte type shape

Knizocytes~Figs. 106 and 107 in@12#! are triconcave and
quadriconcave shapes found in the experiments of RB
The shape denoted by Fig. 2 is a quadriconcave shape
bears a resemblance to the experimentally observed s
~Fig. 106 in @12#!. Its location in the phase diagram
(v50.84, c0521.41!, denoted by ‘‘* 2’’ in Fig. 6. The
shape has rotational symmetry which is identical to a c
and is also isomorphic toS4 @24#. This shape may be see
under different circumstances. In fresh blood, it may be
served in certain hemolytic anemias. In addition, if a susp
sion of cells is examined between slide and coverslip and
erythrocyte permitted to adhere to the slide, gentle defor
tion of the cell by a current of liquid in the preparation m
produce this appearance@25#.

Sickle type shape

Figure 3 bears the resemblance of the sickle cells in e
nocytic forms~Fig. 198 in @12#!. The location in the phase
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FIG. 1. ~a! A corniculate shape at reduced volumev50.95 and
reduced spontaneous curvaturec051.35. ~b! A heavily distorted
shape after subjecting the corniculate shape to perturbations of
amplitude.~c! An axisymmetric ellipsoid evolved from a distorte
shape with the same values of reduced volume and reduced s
taneous curvature as~a!.



a
ex
no

a
24

ny

n
ty
-

-

ab-
lter-
the
or

our

d
pe
are

uc-
on-

ed

Fig.
ced

se-

4734 PRE 58YAN JIE et al.
diagram is (v50.74,c0521.48! and is denoted by ‘‘* 3’’ in
Fig. 6. Sickle cell is related to sickle cell disease, a heredit
abnormality. Sickle cells appear when affected blood is
posed to a sufficiently low oxygen tension. The phenome
can also be seen by sealing a preparation between slide
coverslip and waiting a few hours or leaving the blood for
to 48 hours in a vessel without oxygen@26#.

Acanthocyte type shape

Figure 4 shows a strikingly complex shape without a
intrinsic geometric symmetry. Characteristic of this shape
its irregular shape and several irregularly distributed cre
tions, which are the same as the so-called acanthocyte
cell shapes~Figs. 157 and 159 in@12#! observed experimen
tally in RBCs. The location of this shape in Fig. 6 is (v
50.39, c051.35! denoted by ‘‘* 4.’’ It is obtained by a
shape transition procedure starting from Fig. 1~a! by gradu-
ally increasing the reduced volumev. The designation acan
thocyte was given by Singeret al. @27# to crenated red cells

FIG. 2. A quadriconcave shape at reduced volumev50.84 and
reduced spontaneous curvaturec0521.41.

FIG. 3. A sickle type shape at reduced volumev50.74 and
reduced spontaneous curvaturec0521.48.
ry
-
n
nd

is
a-
pe

found in a hereditary illness now characterized by the
sence of beta-lipo-protein and serious nervous system a
ations. The abnormality appears to develop during
lifespan of the cells within the circulation and to be absent
minimal in the youngest cells@28#. Such complex irregular
acanthocyte type shapes are found to be abundant in
study.

Tubelike shapes

Figures 5~a! and 5~b! are two interesting shapes: a curve
tubelike tail with a biconcave head and a tubelike sha
without a distinct head, respectively. Their parameters

FIG. 4. An acanthocyte type shape obtained by gradually red
ing the reduced volume, while the reduced curvature is kept c
stant, as in Fig. 1~a!. The reduced volume isv50.38 and reduced
spontaneous curvaturec051.35.

FIG. 5. ~a! A tubelike shape with a biconcave head at reduc
volume v50.38 and reduced spontaneous curvaturec051.35. ~b!
A tubelike shape without a distinct head at reduced volumev
50.46 and reduced spontaneous curvaturec051.35. The two
shapes belong to the shape transition sequence starting from
1~c! and gradually reducing the reduced volume, while the redu
curvature is kept constant. It is not surprising to see that~a! is
coexisting with Fig. 4 which belongs to the shape transition
quence starting from Fig. 1~a!, since Fig. 1~a! and~a! are coexisting
shapes.
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(v50.38, c051.35! and (v50.46, c051.35!, respectively.
Obviously, Fig. 5~a! is coexisting with Fig. 4 and its location
is also denoted by ‘‘* 4’’ in the phase diagram. Figure 5~b! is
denoted by ‘‘* 5’’ in the phase diagram. The two shap
were obtained by a shape transition procedure starting f
Fig. 1~c! and by increasing the reduced volumev gradually.
In the study of the transformation pathway of liposom
@13#, Fig. 5~b! was experimentally observed as a sta
shape. Figure 5~a! was also obtained in the same experime
but only as a transient shape before the final state@Fig. 5~b!#
was achieved. However, according to our study, both sha
of Fig. 5~a! as well as Fig. 5~b! are found stable. There ar
two possible explanations to account for the discrepa
with the experimental observations:~1! there may exist othe
energy contributions in such a tiny size which prevent F
5~a! from being stable in experiments;~2! by changing the
experimental condition, stable configurations like Fig. 5~a!
may become stable.

Similar observations were also made in the experiment
RBCs. The book@12# provides many examples of vesicle

FIG. 6. The schematic copy of the phase diagram in the
model reproduced by permission of the authors@6#. The phase dia-
gram shows the shape of lowest curvature energy as a functio
the reduced volumev and the reduced spontaneous curvaturec0 .
The regions where the prolate/dumb-bell, pear-shaped, ob
discocyte, and stomatocytes are stable are separated by tran
lines. The shapes included in the initial phase diagram are all
symmetric, and the shaded regions are those that have not
explored by previous studies. We plot in the phase diagram
locations of the shapes found in the study in order to know to wh
region these shapes belong. They are denoted by* n wheren is an
integer.* 1 corresponds to the two coexisting shapes Fig. 1~a! and
Fig. 1~c!; * 2 corresponds to Fig. 2;* 3 corresponds to Fig. 3;* 4
corresponds to two existing shapes Fig. 4 and Fig. 5~a!. * 5 corre-
sponds to Fig. 5~b!.
m

s

t

es

y

.

in

with tubelike tails and various kinds of head shapes. We fi
that Fig. 182 of@12#, which denotes a kind of poikilocytes in
the discocytic form, resembles Fig. 5~a!. Poikilocytes are re-
lated to the thalassemia disorders or Mediterranean anem
They take on a variety of bizarre erythrocyte shapes. Tho
the example is not ‘‘identical’’ to Fig. 5~a! from the appear-
ance, it indicates that the latter assumption may be corr
i.e., Fig. 1~a! may be stable under certain conditions.

IV. DISCUSSION AND CONCLUSIONS

The algorithm used in this study has the ability to fin
complex vesicle shapes starting from simple initial ones
der the jump procedure described in the paper. With th
complex shapes as the starting shapes, more complex sh
are generated by the shape transition procedure. Many s
ingly complex shapes have been found within the framew
of the SC model. Some of the shapes searched bear re
blance to experimental observations. Apparently the pro
dure is also useful in searching new shapes of high genus
can be used in other curvature models. Among the sha
provided in this paper, we have the strong impression of
existence of complex irregular shapes such as the acan
cyte type shapes and curved tubelike shapes, in the
model, because they are the first reported irregular shape
spherical topology in a simple curvature energy model. O
study shows that adding new energy contributions, such
higher-order-curvature terms and van der Waals attractio
the membrane, is not necessary to account for such abno
shapes. In fact, we have also obtained several other irreg
shapes which are not included in this paper.

The reason why these shapes may have not been rep
by other researchers also employing the same algorithm
be simple: most complex configurations will not show up
the shape transition procedure if the starting shape is sim
In fact, since a pair of values of (v,c0) corresponds to a se
of coexisting shapes, the coexisting shape transition
quences also exist. In fact, Fig. 4 belongs to the shape t
sition sequence starting from the shape of Fig. 1~a!, while
Fig. 5~a! and Fig. 5~b! belong to the sequence starting fro
Fig. 1~c!. Since Fig. 1~a! and Fig. 1~c! are two coexisting
shapes, the two sequences are also coexisting.
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