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Numerical observation of nonaxisymmetric vesicles in fluid membranes
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By means of Surface Evolver, a software package of brute-force energy minimization over a triangulated
surface developed by the geometry center of the University of Minng&sfa Math1, 141(1992], we have
numerically searched the nonaxisymmetric shapes under the Helfrich spontaneous cuS@tueaergy
model. We show that there are abundant mechanically stable nonaxisymmetric vesicles in the SC model,
including both regular shapes with intrinsic geometric symmetry and complex irregular ones. We report in this
paper a catalog of interesting shapes includingpeiculateshape with six corns, a quadriconcave shape, a
shape resemblingickle cells a shape resemblirecanthocytesand twotubelikeshapes. Most of these shapes
can be related to experimental observations in red blood cells and other experiments in fluid membrane.
[S1063-651%98)06510-9

PACS numbegps): 82.70-y, 68.15:+¢, 02.40-k

I. INTRODUCTION log of possible axisymmetric vesicle shapes. In their papers
they used the nomenclature developed in the red blood cells
Vesicles are bags of lipid bilayer membranes which form(RBC9 literature to describe the shapes they found: The pro-
spontaneously in an aqueous environment under appropriatgte and oblate ellipsoid, stomatocytes, and discocytes, some
conditions. In order to study theoretically the morphology ofof which strikingly resemble the shapes of human RBCs.
vesicles, a lipid bilayer with liquid crystalline structures and  Further, by performing the variation of the energy func-
characteristics has long been considered as a model. A déenal the general equilibrium shape equation was derived
scription of a fluid membrane by a curvature energy mode[5],
was given by Canhaift], in which the local energy density
of the form (2H)? was introduced, wherél is the mean AP+ 2\H—2k[2H(H?—K)+CoK +(C3/2)H+V2H]=0,
curvature of the surface. According to the current viewpoint, (2)
this energy model is a faithful description of a vesicle which
consists of a symmetric bilayer. However, real lipid bilayerswherev2=[(1/y/g) 4;(g" \/5(91.)] is the Laplace-Beltrami op-
are not symmetric and hence there is no genuine physic@lrator, g is the determinant of the metrig;;, and g
realization of this model. Helfrich2] proposed from curva- =(g;) "% K=C,C, is the Gaussian curvature, artd
ture elastic theory in liquid crystal the well-known spontane-= (1/2)(C, +C,) is the mean curvaturéhere we use a dif-
ous curvaturé¢SC) energy model, in which the energy func- ferent sign convention for from the original derivation of

tional is the general shape equation[&).
By using the scale invariance of the curvature energy
F= EKCJ (Cy+ Cz—Co)szﬂLAPf dV“‘f dA, functio.nal(l), the number pf parameters can be reduced. The
2 areaA is often used to define a length sc&g=A/4w, and

(1) Ry is used to define two independent dimensionless vari-

ables, the reduced volume=V/(4/3)7R3, and the reduced
wheredA anddV are the surf_ace area and the volume ele'spontaneous curvatuig,= C4R,. Any solution of Eq.(2)
ments for the vesicle, respectively, is an elastic modulus,

e depends only on these two dimensionless quantities. The val-
C, and_Cz are the two principal curvatures o_f the surfac_e,ues of ©,c,) in general correspond to a set of shapes, de-
andC, is the spontaneous curvature to describe the possiblgia byS(U,CO)' For a given value o&,, it can be qualita-

asymmetry of the bilayer membrane. Nonzero value€gf .. .
result from the fact that a lipid bilayer may have a tendenc;}'vely understood that the number of shape§(|pco) should

to curve one way or the other, due, for example, either tdncrease as decreases. At the right end=1, there is only
intrinsic chemical asymmetry between the two leaves and/oPhe shape i ), namely, the sphere.

to a chemical asymmetry between the interior and exterior Locating different branches of shapes of minimal energy
agueous environments. The Lagrange multipli®#f and A in the parameter space spanned bycg), the division of the
take account of the constraints of constant volume and areparameter space represents the so-called phase diagram for
which can be physically understood as the osmotic pressuthe vesicle shapes. In the SC model, Seiétral. [6] calcu-
between the ambient and the internal environments, and tHated the two-dimensional phase diagram for axisymmetric
surface tensile coefficient, respectively. Based on the modeshapes within a limited parameter space.

many works on the morphology of vesicles have been done Solving the shape equation under the axisymmetric case
in the axisymmetric case. In their pioneering work on thein which the corresponding shape equation can be trans-
model, Deuling and Helfrich3,4] numerically found a cata- formed from Eq.(2) into an ordinary differential equation
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[7], several analytical solutions have been found. Amonglirectly minimizes the total energy. The resulting shape has a
these solutions are the solution of biconcave shape, the tordscal energy minimum which depends in principle on the
solution, and the beyond-Delaunay surfai@sin which the initial shape chosen.
first two solutions have been supported experimentaly We will also locate each shape found by us in the phase
All these studies concentrate on axisymmetric vesiclediagram in order to know to which region of the parameter
shapes. No nonaxisymmetric vesicle shape of spherical tgiPace these shapes belong. Further, in order to describe the
pology has been reported in the SC model. vesicle shapes, we will use the same norr_lenclature A<in

On the other hand, in other curvature energy modelsfor the shapes that resemble the figure$1i]. ,
some progress has been achieved in finding nonaxisymmetric 1€ plan of the paper follows: Section Il describes the
vesicle shapes of spherical topology by means of brute-forc8'907ithm and the procedure; Sec. 1l gives the main results;
energy minimization over a triangulated surface. In the aregnd Sec. IV has the discussion and conclusion.
difference elastidADE) model, nonaxisymmetric ellipsoid
shapes have been reportgtD], and very recently, Wintz Il. MODEL, SOFTWARE, AND THE PROCEDURE

et aI: .[11] reported a _catalqg of starfish_ shgpes based on a In order to find the locally stable nonaxisymmetric con-
modlf!e.d' ADE model including the contribution of t.he_ com- figurations of vesicles, we evaluate the bending energy nu-
pl’eS.SIblllty of the total area and volume. Characteristic of themerically with the constraint of the constant volume and/or
starfish shapes is their flatness and their multifold symmetryeonstant area within the SC model. Under the constraint of
As far as we know,_ no otr_ler nonaxisymmetric vesicle shap@gnstant volumeV, the parameten is understood as the
has been reported in the literature by any of the known modtensile coefficient while under the constraint of constant area
els. A, the parameteA P is understood as the osmotic pressure.
However, on the experimental side, various nonaxisym- The software we used to search for the surfaces is the
metric RBC shapes of spherical topology have long beertSurface Evolver” package of computer prograni&5s]
observed. They may take very complex configurations, anevhich is based on the discretization of the curvature energy,
many of them even have no intrinsic geometric symmetrythe area, and the volume on a triangulated surface. The en-
There are a lot of clear figures obtained by scanning electroargy in the Evolver can be a combination of surface tension,
microscope of RBCs in the bookiving Blood Cells and gravitational energy, squared mean curvature, etc. The con-
Their Ultra-structure[12] including very complex vesicle straints can be on vertex positions, or on integrated quantities
shapes such as thechinocyte typecells (Fig. 98 in [12]) such as body volume, surface area, etc. The constraints are
which have a characteristic shape with crenations or spiculé§corporated in the bending energy. The resulting total en-
(almos} evenly distributed on the surface, taeanthocyte ~€rgy is minimized by a gradient descent procedure, and the
typecells(Figs. 157 and 159 if.2]) which bear a superficial resulting shape is a local energy minimum. These character-
resemblance t@chinocytesbut with many fewer spicules istics of the_ Evolver mgke it a useful tool for studying non-
irregularly arranged and bent back at their tips,khizocytes ~ @XiSymmetric shapes in the SC model. In the Evolver the
(Figs. 106 and 107 if12]) which are triconcave and quad- osmotic pressure is den_oted by an mternal presE’uaaq I
riconcave shapes, thsickle typecells (Fig. 198 in[12])  Can deal with the following energy functional conveniently:
which show a sicklelike shape, and so on. In addition, many
other complex. shapes were fou_nd in the ex_perimental study FZmlJ (H —Ho)szH\f dA— PJ dv, 3)
of transformation pathways of liposomgk3], in which the
shape transformation is induced by the osmotic pressure. A
circular biconcave form was used as the initial shape in thisvhere m; is called the “weight” of the bending energy.
study. Many thin stable flexible tube forms were also found.Under the definition ofH=(1/2)(C,+C,), the model is
Before the full development of these tubes certain transienlentical to the SC model under the transformationg
forms appear which can be described as filaments with smak 2., P=—AP, and Hy=Cy/2. No particular units of
heads. These tubes are curved, so they are also nonaxisymeasurement are used in the Evolver. However, in order to
metric. relate the program values to a real situation, all the values
These complex shapes have not yet been understood themdght to be within one consistent unit system.
retically in the context of bending energy models. Some re- The software has been employed to deal with many geo-
searcherg$14] believe that such exotic shapes may involvemetric problems such as constant mean curvature surfaces,
other energy contributions such as higher-order-curvaturequilibrium foam structures, etc. for several ygdig—19. It
terms and van der Waals attraction of the membrane. Howhas also been utilized to deal with a wide range of physical
ever, the conjecture is not so obvious as it seems. We wouldroblems involving surfaces as shaped by surface tension
like to explore if it is possible to describe these complexand bending and other energies for a long time. To study
shapes by a simple curvature model, such as the SC modddelvin’s conjecture on minimal surfaces the authorg 1]
The purpose of this paper is to search numerically for nonused the Surface Evolver to produce the minimal structure of
axisymmetric shapes of spherical topology within the frameflat-sided polyhedral cells. The Surface Evolver was also
work of the SC model. used to study elasticity of dry foani20,21] and compressed
Inspired by its success in finding the nonaxisymmetricemulsions[22,23. Just as an exercise, we tested it for the
ellipsoidal and starfish shaped vesid&8,11], we have em- equilibrium condition of a perfect sphere with a given target
ployed the algorithm of brute-force energy minimization volume evolved from a cube in the SC model. The equilib-
over a triangulated surface in the present study. The methadum condition for the energy functionB) is
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—Pr3+2xr2+2mHor(— 1+ Hqr)=0, (4 We suggest the following alternative procedure: if some
geometric quantities, such as the volume, the area, the re-
wherer is the radius of the sphere. This is identical to theduced volume, etc., of the target shape are chosen to be far
results in[5]. With the parameters;; =1, Ho=1,A=2, and  from the initial shape, one can imagine that the initial shape
the target volum&/=4.189, we obtained a stable unit spherewill evolve continuously through a long and complex path-
from the Surface Evolver with the arde=12.5774, and the way before it finally reaches a stable configuration satisfying
Lagrange multiplierP=4.0023, which do satisfy the equi- all the geometric constraints. Any configuration in the path-
librium condition. way is unstable. One should expect the final sHagevell as
Though the surfaces found by such an algorithm correthe pathway to be sensitive to the initial shape due to its
spond to the energy minima, the Surface Evolver has a prdeng and complex pathway. Two shapes only slightly differ-
vision to test the stability by subjecting the resulting shapegnt from each other may lead to two very different final
to a perturbation of finite amplitude. Each vertex of the tri-shapes with the same target constraints since the small dif-
angulated surface is moved Bysin(v- w+ ), whereA is  ference will be enlarged in the course of evolution.
the amplitude vectory is the position vector of the vertexes,  Hence, from an initial shape with parametets ,¢,),
w is the wave vector, and is the phase. The parametés there exist different ways to obtain a final shape with target
o, and ¢ can be set by hand or generated randomly. In theparameters «;,c,). (a8) The shape transition procedure:
random cases, a random amplitudleand a random wave- scanning fromv; to v gradually. The shape at each scanning
lengthL are chosen from a sphere whose radius is the size aftep is stable and the final shape is insensitive to the initial
the object. We used this feature of the Surface Evolver to testhape.(b) The “jump” procedure: an initial shape evolves
all the shapes reported in the paper. directly into a final shape with the target parameters, which
One should keep in mind two important points of thisis sensitive to the initial shape. The two procedures may
algorithm.(1) A data file describing the initial shape must be produce different final shapes coexisting at the same param-
provided in order to initiate the Surface Evolver. It is quite eters from the same initial shape. Obviously, the jump pro-
difficult to write the data file for a complex shape. Polyhedracedure provides us with the ability to obtain complex shapes
are often used as initial shapes from which a target shapom simple initial shapes. Using shapes found by the jump
satisfying the constraints, such as target volume, target aregyocedure as the initial shapes, more interesting shapes can
etc., can be obtained by refining and evolving commands obe generated using the shape transition procedure.
the software.(2) The final shape satisfying the constraints However, there is a technical difficulty with the jump pro-
strongly depends on the choice of the initial shape. One magedure described above: changing the reduced volume
expect that all the possible shapes in a parameter range abruptly imposes constraints on both the afeas well as
<yp<v, and Co,<Cp=Cp, Can be found by scanning the the volumeV, which often lead to a singular behavior of the
region step by step from an initial shape. However, this doesoftware. The Surface Evolver may not converge within a
not happen becausa) for any pair of values ofi,c,), there  finite number of iterations and singularities might occur. To
is in general a set of coexisting stable shafthse coexisting avoid this problem, we free the constraints on area and
shapes means the shapes with the same parameter )valugbruptly change the volumé to a value far from the initial
and (b) the shape found by the algorithm depends stronglyone. The Surface Evolver thus gains much more freedom to
on the initial shape. Thus the shapes generated by the sca@ieform the shape in the process of evolving and works with
ning method form just a subset of all the possible shapegnany fewer singularities.
Since normally one can write only a simple data file for the We calculated the reduced spontaneous curvature and the
starting shape, it is difficult to obtain complex shapes by thegeduced volume for the shapes and located them in the pa-
scanning procedure. Consider the following example: from &ameter space spanned hy,¢,) in order to know in which
starting shapéwhich can be stable or unstahlevith Cy and  region of the parameter space these shapes exist. Following
A constant, by gradually changing the value of the targeis an outline of the procedurésupposing we start from a
volumeV, one can get a sequence of stable shdfiesse- sphere of volume )1
quence does not include the initial shapelowever, since (i) Given certain values ofC, and \, let the Surface
the (i +1)th shape is determined by théh shape, the whole Evolver evolve the sphere to a target shape with volime
sequence of generated shapes is determined by the startimpereV is far from 1. Here\ is the tensile coefficient, and
shape. A very important point is that the sequence of thé&, is the spontaneous curvature. It is hoped that such a sud-
generated shapes is insensitive to the initial shape, in that triéen and big change in the volume will trigger a “random
same sequence is obtained even if the initial shape is slightlyalk” in the configuration space of the surface shapes before
distorted. The above scanning process of the example i finally settles in a nontrivial locally stable configuration
equivalent to scanning step by step along the reduced volumeith volumeV. This procedure can be applied to any shape
while the reduced spontaneous curvature is kept constario generate more stable shapes.
However, since for any given pair of values of,¢,), there (i) We choose the complex shapes obtained in the above
exists a set of coexisting sha,;s@’co), it is obvious that the process and study their shape transition sequences, which

shapes included in the sequence form just a subset of all tHe&n generate more stable and interesting shapes.

shapes existing in the scanning region. Maf@pmplex

s_hapes \_/viII not shoyv up since_ i_n_ general one can only pro- IIl. MAIN RESULTS

vide a simple datafile for the initial shape. To get complex

shapes from the simple initial shapes, the sequence’s insen- By the procedure described in the preceding section,
sitiveness to the initial shape must be broken. many striking vesicle shapes were found. Some of the shapes
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resemble the RBC shapes observed experimentally while P
some resemble the experimental results of liposomes. To de- ,;;‘i;’@%‘a%iéz‘:\
scribe these exotic shapes, we adopt the nomenclature use: Z "e;fm%}%%‘\
in the red blood cells literature for those resembling the ob- Y e
servations in RBCs. We report six types of shapes in this j@;fzf%;f;ﬁ;fgé
paper, the corniculate shape, the knizocyte type shape, the ¢ OISR

sickle type shape, the acanthocyte type shape, and two tube
like shapes shown in Fig(d), Fig. 2, Fig. 3, Fig. 4, and Fig.
5(a), Fig. 5b), respectively. Two thousand to 3000 grid
points were used with an accuracy of at least 1% in the total
energy.

Though the shapes searched by the algorithm are locally
stable, the stability was further tested by subjecting them to
perturbations of finite amplitude. All the six shapes are stable
under the perturbations. Each of the shapes is mapped inta
the two-dimensional phase diagram following Seifettal.

[6] in reduced volume and the scaled spontaneous curvature.

Corniculate shape

Figure Xa) shows a corniculate surface with six corns,
whose location in the phase diagram is<(0.95, cy=1.35.
This shape apparently has rotational symmetry which is
identical to the octahedron and thus isomorphi&o where

Sy denotes the group of permutations of the Xe{24]. A («X
Though we did not find a similar shape [ih2], this shape )ﬂ;;%;’fe}""‘
may indicate the way of formation of echinocyte Il vesicle w??:%?iy
shapeqFig. 98— Fig. 100 if12]) which have 10-50 corns (SR

evenly distributed on a nearly spherical surface. To show the
fact that there are coexisting shapes in the parameter spact
spanned by «,cy), keeping ¢,cy) constant, we subjected
the shape shown by Fig.(d to long wavelength perturba-
tion with large amplitude. It is heavily deformed into a dis-
torted one, shown by Fig.(t). Running the Surface Evolver

on the deformed shape, we finally got a new stable shape
shown by Fig. 1c), an axisymmetric ellipsoidlike shape
which has the same parameters as those of Ka&). $ince

Fig. 1(a) and Fig. 1c) are at the same location in the param- )
eter space, we use the mark1” in Fig. 6 to denote both

the shapes. It is obvious that the two coexisting stable shapes

will lead to two different shape transition sequences under P e"ée%e‘e SRS
iti LT SRR SSSREN
the same transition procedure. /ﬁé@ %‘%ﬁiﬁ%ﬁiﬁf}f} SR
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Knizocyte type shape

K

Knizocytes(Figs. 106 and 107 ifl2]) are triconcave and
quadriconcave shapes found in the experiments of RBCs.
The shape denoted by Fig. 2 is a quadriconcave shape anc
bears a resemblance to the experimentally observed shapt
(Fig. 106 in[12]). Its location in the phase diagram is
(v=0.84, cy=—1.41), denoted by %2” in Fig. 6. The
shape has rotational symmetry which is identical to a cube
and is also isomorphic t8, [24]. This shape may be seen (¢
under different circumstances. In fresh blood, it may be ob-
served in certain hemolytic anemias. In addition, if a suspen-
sion of cells is examined between slide and coverslip and an
erythrocyte permitted to adhere to the slide, gentle deforma-

tion of the cell by a current of liquid in the preparation may
produce this appearan€2s). FIG. 1. (8 A corniculate shape at reduced volume 0.95 and

reduced spontaneous curvatwg=1.35. (b) A heavily distorted

Sickle type shape amplitude.(c) An axisymmetric ellipsoid evolved from a distorted

shape after subjecting the corniculate shape to perturbations of large

Figure 3 bears the resemblance of the sickle cells in echishape with the same values of reduced volume and reduced spon-

nocytic forms(Fig. 198 in[12]). The location in the phase taneous curvature 4g).
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FIG. 4. An acanthocyte type shape obtained by gradually reduc-
ing the reduced volume, while the reduced curvature is kept con-
stant, as in Fig. (). The reduced volume is=0.38 and reduced
spontaneous curvatumy=1.35.

FIG. 2. A quadriconcave shape at reduced volume).84 and
reduced spontaneous curvatugg= —1.41.

diagramis ¢ =0.74,cq= —1.48 and is denoted by *3” in found in a hereditary illness now characterized by the ab-
Fig. 6. Sickle cell is related to sickle cell disease, a hereditargence of beta-lipo-protein and serious nervous system alter-
abnormality. Sickle cells appear when affected blood is exations. The abnormality appears to develop during the
posed to a sufficiently low oxygen tension. The phenomenotifespan of the cells within the circulation and to be absent or
can also be seen by sealing a preparation between slide anginimal in the youngest cellE28]. Such complex irregular
coverslip and waiting a few hours or leaving the blood for 24acanthocyte type shapes are found to be abundant in our
to 48 hours in a vessel without oxygEp6]. study.

Acanthocyte type shape Tubelike shapes

Figure 4 shows a strikingly complex shape without any Figures %a) and 5b) are two interesting shapes: a curved
intrinsic geometric symmetry. Characteristic of this shape igubelike tail with a biconcave head and a tubelike shape
its irregular shape and several irregularly distributed crenawithout a distinct head, respectively. Their parameters are
tions, which are the same as the so-called acanthocyte type
cell shapegFigs. 157 and 159 ifi12]) observed experimen-
tally in RBCs. The location of this shape in Fig. 6 is (
=0.39, cy=1.395 denoted by *4.” It is obtained by a
shape transition procedure starting from Figg) by gradu-
ally increasing the reduced volunee The designation acan-
thocyte was given by Singet al.[27] to crenated red cells

‘ A AN
O
Wi

gl
N
b

Vi
7
7

N
N\
f

~
K)
v

(b)

FIG. 5. (a) A tubelike shape with a biconcave head at reduced
volumev=0.38 and reduced spontaneous curvatye 1.35. (b)
A tubelike shape without a distinct head at reduced volume
=0.46 and reduced spontaneous curvatoge=1.35. The two
shapes belong to the shape transition sequence starting from Fig.
1(c) and gradually reducing the reduced volume, while the reduced
curvature is kept constant. It is not surprising to see tlaatis
coexisting with Fig. 4 which belongs to the shape transition se-

FIG. 3. A sickle type shape at reduced volume0.74 and  quence starting from Fig.(&), since Fig. 1a) and(a) are coexisting
reduced spontaneous curvatugg= — 1.48. shapes.
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with tubelike tails and various kinds of head shapes. We find
that Fig. 182 of12], which denotes a kind of poikilocytes in
the discocytic form, resembles Fig@. Poikilocytes are re-
lated to the thalassemia disorders or Mediterranean anemias.
They take on a variety of bizarre erythrocyte shapes. Though
the example is not “identical” to Fig. ®) from the appear-
ance, it indicates that the latter assumption may be correct,
i.e., Fig. Xa) may be stable under certain conditions.

stomatocytes

IV. DISCUSSION AND CONCLUSIONS

The algorithm used in this study has the ability to find
complex vesicle shapes starting from simple initial ones un-
der the jump procedure described in the paper. With these
complex shapes as the starting shapes, more complex shapes
are generated by the shape transition procedure. Many strik-
v 06 08 10 ingly complex shapes have been found within the framework

of the SC model. Some of the shapes searched bear resem-
Slance to experimental observations. Apparently the proce-
gure is also us_eful in searching new shapes of high genus and
the reduced volume and the reduced spontaneous curvatye can .be u;ed .m other curvature models. A_mong the shapes
The regions where the prolate/dumb-bell, pear-shaped, oblategrc_)vIdEd in this paper,.we have the strong impression of the
discocyte, and stomatocytes are stable are separated by transitigﬁ'Stence of complex irregular shape_s such as th? acantho-
lines. The shapes included in the initial phase diagram are all axi¢Yt® type shapes and curved tubelike shapes, in the SC
symmetric, and the shaded regions are those that have not be8h0del, because they are the first reported irregular shapes of
explored by previous studies. We plot in the phase diagram théPherical topology in a simple curvature energy model. Our
locations of the shapes found in the study in order to know to whickStudy shows that adding new energy contributions, such as
region these shapes belong. They are denotetnbyheren is an higher—order—curvature terms and van der Waals attraction of
integer.* 1 corresponds to the two coexisting shapes Fig) &nd  the membrane, is not necessary to account for such abnormal
Fig. 1(c); *2 corresponds to Fig. 23 corresponds to Fig. 34 shapes. In fact, we have also obtained several other irregular
corresponds to two existing shapes Fig. 4 and Fig).35 corre-  shapes which are not included in this paper.
sponds to Fig. &). The reason why these shapes may have not been reported
by other researchers also employing the same algorithm may
(v=0.38, co=1.39 and (v=0.46, co=1.39, respectively. be simple: most pomplex configurations v_viII not sho_vv up in
Obviously, Fig. %a) is coexisting with Fig. 4 and its location the shap_e transmo_n procedure if the starting shape is simple.
is also denoted by #4" in the phase diagram. Figurdlh is In fact, since a pair of values ob (.CO.) corresponds to a set
denoted by *5" in the phase diagram. The two shapes of coexisting sh_apes, the c'oeX|st|ng shape transition se-
were obtained by a shape transition procedure starting froffuences also exist, Ir_1 fact, Fig. 4 belongs to t_he shape tran-
Fig. 1(c) and by increasing the reduced volumeradually. sition sequence starting from the shape of F'gi)'lwh"e
In the study of the transformation pathway of IiposomesF'g' 5@ and Fig. $b) belong to the sequence starting from

[13], Fig. 5b) was experimentally observed as a stabIeF'g' Yc). Since Fig. 1a) and Fig. 1c) are two coexisting
shape. Figure (@) was also obtained in the same experimentShapeS’ the two sequences are also coexisting.
but only as a transient shape before the final dtaig 5b)]
was achieved. However, according to our study, both shapes
of Fig. 5@ as well as Fig. &) are found stable. There are ~ We are indebted to Professor Ken Brakke, Professor
two possible explanations to account for the discrepancKarsten Grosse-Brauckmann, and Professor Rob Kusner for
with the experimental observationd) there may exist other their guidance with the software and for useful suggestions,
energy contributions in such a tiny size which prevent Fig.and to Dr. Seifert for the permission to copy the phase dia-
5(a) from being stable in experiment§2) by changing the gram as shown in Fig. 6. We thank Professor Vipin Srivas-
experimental condition, stable configurations like Figa)5 tava for his discussions and a critical reading of the paper,
may become stable. and thank Dr. Zhou Haijun and Dr. Zhao Wei for fruitful
Similar observations were also made in the experiments idiscussions. This work is partly supported by the National
RBCs. The booK12] provides many examples of vesicles Natural Science Foundation of China.

0 0.2 0.4
FIG. 6. The schematic copy of the phase diagram in the S

model reproduced by permission of the autHd@k The phase dia-
gram shows the shape of lowest curvature energy as a function
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